Human traits and Epigenetics

Human traits are determined by epigenetic control of gene expression


Excerpt: "Genome‐wide SNP analyses have identified genomic variants associated with adult human height. However, these only explain a fraction of human height variation, suggesting that significant information might have been systematically missed by SNP sequencing analysis. A candidate for such non‐SNP‐linked information is DNA methylation. Regulation by DNA methylation requires the presence of CpG islands in the promoter region of candidate genes. Seventy two of 87 (82.8%), height‐associated genes were indeed found to contain CpG islands upstream of the transcription start site (USC CpG island searcher; validation: UCSC Genome Browser), which were shown to correlate with gene regulation. Consistent with this, DNA hypermethylation modules were detected in 42 height‐associated genes, versus 1.5% of control genes (P = 8.0199e−17), as were dynamic methylation changes and gene imprinting. Epigenetic heredity thus appears to be a determinant of adult human height. Major findings in mouse models and in human genetic diseases support this model. Modulation of DNA methylation are candidate to mediate environmental influence on epigenetic traits. This may help to explain progressive height changes over multiple generations, through trans‐generational heredity of progressive DNA methylation patterns."


Excerpt: "Visel's team was particularly interested in the portion of the genome that does not encode for proteins – until recently nicknamed "junk" DNA – but which comprises around 98% of our genomes. In experiments using embryonic tissue from mice, where the structures that make up the face are in active development, Visel's team identified more than 4,300 regions of the genome that regulate the behaviour of the specific genes that code for facial features. These "transcriptional enhancers" tweak the function of hundreds of genes involved in building a face. Some of them switch genes on or off in different parts of the face, others work together to create, for example, the different proportions of a skull, the length of the nose or how much bone there is around the eyes."

3. Skull morphogenesis


Excerpt: "Histone deacetylases (Hdacs) are transcriptional repressors with crucial roles in mammalian development. Here we provide evidence that Hdac8 specifically controls patterning of the skull by repressing a subset of transcription factors in cranial neural crest cells. Global deletion of Hdac8 in mice leads to perinatal lethality due to skull instability, and this is phenocopied by conditional deletion of Hdac8 in cranial neural crest cells. Hdac8 specifically represses the aberrant expression of homeobox transcription factors such as Otx2 and Lhx1. These findings reveal how the identity and patterning of vertebrate-specific portions of the skull are epigenetically controlled by a histone deacetylase."

4. Hair color

https://en.wikiversity.org/wiki/Genes/Expressions/Hair_colors


5. Skin and eye color


My comment: Traits are not determined by gene sequences. There are no mechanisms for evolution. Everything points to Design and Creation. Don't get misled.


Comments

Popular posts from this blog

Previous Sexual Partners Can Influence Another Male's Offspring

Early-stage embryos with abnormalities can still develop into healthy babies

DNA methylation is directed by RNA